General Certificate of Education
June 2007
Advanced Level Examination

A
 ASSESSMENT and
 OUALIFICATIONS

MFP3
MATHEMATICS
Unit Further Pure 3

Wednesday 20 June 20071.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP3.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 (a) Find the value of the constant k for which $k x^{2} \mathrm{e}^{5 x}$ is a particular integral of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-10 \frac{\mathrm{~d} y}{\mathrm{~d} x}+25 y=6 \mathrm{e}^{5 x} \tag{6marks}
\end{equation*}
$$

(b) Hence find the general solution of this differential equation.

2 The function $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=\sqrt{x^{2}+y^{2}+3}
$$

and

$$
y(1)=2
$$

(a) Use the Euler formula

$$
y_{r+1}=y_{r}+h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with $h=0.1$, to obtain an approximation to $y(1.1)$, giving your answer to four decimal places.
(b) Use the improved Euler formula

$$
y_{r+1}=y_{r}+\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

where $k_{1}=h \mathrm{f}\left(x_{r}, y_{r}\right)$ and $k_{2}=h \mathrm{f}\left(x_{r}+h, y_{r}+k_{1}\right)$ and $h=0.1$, to obtain an approximation to $y(1.1)$, giving your answer to four decimal places.

3 By using an integrating factor, find the solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+(\tan x) y=\sec x
$$

given that $y=3$ when $x=0$.

4 (a) Show that $(\cos \theta+\sin \theta)^{2}=1+\sin 2 \theta$.
(b) A curve has cartesian equation

$$
\left(x^{2}+y^{2}\right)^{3}=(x+y)^{4}
$$

Given that $r \geqslant 0$, show that the polar equation of the curve is

$$
r=1+\sin 2 \theta
$$

(c) The curve with polar equation

$$
r=1+\sin 2 \theta, \quad-\pi \leqslant \theta \leqslant \pi
$$

is shown in the diagram.

(i) Find the two values of θ for which $r=0$.
(ii) Find the area of one of the loops.

5 (a) A differential equation is given by

$$
\left(x^{2}-1\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}=x^{2}+1
$$

Show that the substitution

$$
u=\frac{\mathrm{d} y}{\mathrm{~d} x}+x
$$

transforms this differential equation into

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{2 x u}{x^{2}-1} \tag{4marks}
\end{equation*}
$$

(b) Find the general solution of

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}=\frac{2 x u}{x^{2}-1}
$$

giving your answer in the form $u=\mathrm{f}(x)$.
(c) Hence find the general solution of the differential equation

$$
\left(x^{2}-1\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}=x^{2}+1
$$

giving your answer in the form $y=\mathrm{g}(x)$.

6 (a) The function f is defined by

$$
\mathrm{f}(x)=\ln \left(1+\mathrm{e}^{x}\right)
$$

Use Maclaurin's theorem to show that when $\mathrm{f}(x)$ is expanded in ascending powers of x :
(i) the first three terms are

$$
\ln 2+\frac{1}{2} x+\frac{1}{8} x^{2}
$$

(ii) the coefficient of x^{3} is zero.
(b) Hence write down the first two non-zero terms in the expansion, in ascending powers of x, of $\ln \left(\frac{1+\mathrm{e}^{x}}{2}\right)$.
(c) Use the series expansion

$$
\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\ldots
$$

to write down the first three terms in the expansion, in ascending powers of x, of $\ln \left(1-\frac{x}{2}\right)$.
(d) Use your answers to parts (b) and (c) to find

$$
\lim _{x \rightarrow 0}\left[\frac{\ln \left(\frac{1+\mathrm{e}^{x}}{2}\right)+\ln \left(1-\frac{x}{2}\right)}{x-\sin x}\right]
$$

7 (a) Write down the value of

$$
\lim _{x \rightarrow \infty} x \mathrm{e}^{-x}
$$

(b) Use the substitution $u=x \mathrm{e}^{-x}+1$ to find $\int \frac{\mathrm{e}^{-x}(1-x)}{x \mathrm{e}^{-x}+1} \mathrm{~d} x$.
(c) Hence evaluate $\int_{1}^{\infty} \frac{1-x}{x+\mathrm{e}^{x}} \mathrm{~d} x$, showing the limiting process used.

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page

