General Certificate of Education June 2007 Advanced Level Examination

MATHEMATICS Unit Further Pure 3

MFP3

ASSESSMENT AND QUALIFICATIONS ALLIANCE

Wednesday 20 June 2007 1.30 pm to 3.00 pm

For this paper you must have:

• an 8-page answer book

• the **blue** AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MFP3.
- Answer **all** questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75.
- The marks for questions are shown in brackets.

Advice

• Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 (a) Find the value of the constant k for which kx^2e^{5x} is a particular integral of the differential equation

$$\frac{d^2y}{dx^2} - 10\frac{dy}{dx} + 25y = 6e^{5x}$$
 (6 marks)

- (b) Hence find the general solution of this differential equation. (4 marks)
- 2 The function y(x) satisfies the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{f}(x, y)$$

where

$$f(x, y) = \sqrt{x^2 + y^2 + 3}$$
$$y(1) = 2$$

and

(a) Use the Euler formula

$$y_{r+1} = y_r + hf(x_r, y_r)$$

with h = 0.1, to obtain an approximation to y(1.1), giving your answer to four decimal places. (3 marks)

(b) Use the improved Euler formula

$$y_{r+1} = y_r + \frac{1}{2}(k_1 + k_2)$$

where $k_1 = hf(x_r, y_r)$ and $k_2 = hf(x_r + h, y_r + k_1)$ and h = 0.1, to obtain an approximation to y(1.1), giving your answer to four decimal places. (6 marks)

3 By using an integrating factor, find the solution of the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + (\tan x)y = \sec x$$

given that y = 3 when x = 0.

(8 marks)

- Show that $(\cos \theta + \sin \theta)^2 = 1 + \sin 2\theta$. (a) 4
 - A curve has cartesian equation (b)

$$(x^2 + y^2)^3 = (x + y)^4$$

Given that $r \ge 0$, show that the polar equation of the curve is

$$r = 1 + \sin 2\theta \qquad (4 \text{ marks})$$

(c) The curve with polar equation

$$r = 1 + \sin 2\theta, \quad -\pi \leqslant \theta \leqslant \pi$$

is shown in the diagram.

- Find the two values of θ for which r = 0. (3 marks) (i)
- (6 marks) Find the area of one of the loops. (ii)

Turn over for the next question

(1 mark)

5 (a) A differential equation is given by

$$(x^2 - 1)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} = x^2 + 1$$

Show that the substitution

$$u = \frac{\mathrm{d}y}{\mathrm{d}x} + x$$

transforms this differential equation into

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{2xu}{x^2 - 1} \tag{4 marks}$$

(5 marks)

(3 marks)

(b) Find the general solution of

$$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{2xu}{x^2 - 1}$$

giving your answer in the form u = f(x).

(c) Hence find the general solution of the differential equation

$$(x^2 - 1)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} = x^2 + 1$$

giving your answer in the form y = g(x).

6 (a) The function f is defined by

 $\mathbf{f}(x) = \ln(1 + \mathbf{e}^x)$

Use Maclaurin's theorem to show that when f(x) is expanded in ascending powers of x:

(i) the first three terms are

$$\ln 2 + \frac{1}{2}x + \frac{1}{8}x^2$$
 (6 marks)

(ii) the coefficient of x^3 is zero. (3 marks)

(b) Hence write down the first two non-zero terms in the expansion, in ascending powers of x, of $\ln\left(\frac{1+e^x}{2}\right)$. (1 mark)

(c) Use the series expansion

$$\ln(1+x) = x - \frac{1}{2}x^2 + \frac{1}{3}x^3 - \dots$$

to write down the first three terms in the expansion, in ascending powers of x, of $\ln\left(1-\frac{x}{2}\right)$. (1 mark)

(d) Use your answers to parts (b) and (c) to find

$$\lim_{x \to 0} \left[\frac{\ln\left(\frac{1+e^x}{2}\right) + \ln\left(1-\frac{x}{2}\right)}{x-\sin x} \right]$$
(4 marks)

7 (a) Write down the value of

$$\lim_{x \to \infty} x e^{-x}$$
 (1 mark)

- (b) Use the substitution $u = xe^{-x} + 1$ to find $\int \frac{e^{-x}(1-x)}{xe^{-x} + 1} dx$. (2 marks)
- (c) Hence evaluate $\int_{1}^{\infty} \frac{1-x}{x+e^x} dx$, showing the limiting process used. (4 marks)

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page